Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.416
1.
J Mass Spectrom ; 59(6): e5031, 2024 Jun.
Article En | MEDLINE | ID: mdl-38726684

Managing ocular microbial infections typically requires pharmacotherapy using antibiotic eye drops, such as moxifloxacin hydrochloride (MFX), combined with an antifungal agent like amphotericin B (AB). We carried out and validated an LC-MS/MS assay to quantify these compounds in rabbit tear fluid in order to look into the pharmacokinetics of these two drugs. We employed a protein precipitation technique for the extraction of drugs under examination. A Waters Symmetry C18 column was used to separate the analytes and internal standard. The composition of the mobile phase was like (A) 0.1% v/v formic acid in water and (B) methanol. The detection of MFX and AB was accomplished through the utilization of positive ion electrospray ionization under multiple reaction monitoring mode. The linearity curves for both analytes exhibited an acceptable trendline across a concentration range of 2.34-300 ng/mL for MFX and 7.81-1000 ng/mL for AB in surrogate rabbit tear fluid. The lower limit of quantitation for MFX was 2.34 ng/mL, while for AB, it was 7.81 ng/mL. The approach was strictly validated, encompassing tests of selectivity, linearity (with r2 > 0.99), precision, accuracy, matrix effects, and stability. Consequently, we employed this method to evaluate the pharmacokinetics profiles of MFX and AB in rabbit tear fluid following single topical doses.


Moxifloxacin , Tandem Mass Spectrometry , Tears , Rabbits , Animals , Tandem Mass Spectrometry/methods , Tears/chemistry , Moxifloxacin/pharmacokinetics , Moxifloxacin/analysis , Reproducibility of Results , Amphotericin B/pharmacokinetics , Amphotericin B/analysis , Limit of Detection , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/analysis , Chromatography, Liquid/methods , Ophthalmic Solutions/pharmacokinetics , Linear Models , Liquid Chromatography-Mass Spectrometry
2.
BMC Infect Dis ; 24(1): 473, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711014

BACKGROUND: The incidence of Talaromyces marneffei (T. marneffei) infection has increased in recent years with the development of organ transplantation and the widespread use of immunosuppressive agents. However, the lack of clinical suspicion leading to delay or misdiagnosis is an important reason for the high mortality rate in non-human immunodeficiency virus (HIV) and non-endemic population. Herein, we report a case of disseminated T. marneffei infection in a non-HIV and non-endemic recipient after renal transplant, who initially presented with skin rashes and subcutaneous nodules and developed gastrointestinal bleeding. CASE PRESENTATION: We describe a 54-year-old renal transplantation recipient presented with scattered rashes, subcutaneous nodules and ulcerations on the head, face, abdomen, and right upper limb. The HIV antibody test was negative. The patient had no obvious symptoms such as fever, cough, etc. Histopathological result of the skin lesion sites showed chronic suppurative inflammation with a large number of fungal spores. Subsequent fungal culture suggested T. marneffei infection. Amphotericin B deoxycholate was given for antifungal treatment, and there was no deterioration in the parameters of liver and kidney function. Unfortunately, the patient was soon diagnosed with gastrointestinal bleeding, gastrointestinal perforation and acute peritonitis. Then he rapidly developed multiple organ dysfunction syndrome and abandoned treatment. CONCLUSIONS: The risk of fatal gastrointestinal bleeding can be significantly increased in kidney transplant patients with T. marneffei infection because of the long-term side effects of post-transplant medications. Strengthening clinical awareness and using mNGS or mass spectrometry technologies to improve the detection rate and early diagnosis of T. marneffei are crucial for clinical treatment in non-HIV and non-endemic population.


Antifungal Agents , Deoxycholic Acid , Kidney Transplantation , Mycoses , Talaromyces , Transplant Recipients , Humans , Talaromyces/isolation & purification , Kidney Transplantation/adverse effects , Middle Aged , Male , Mycoses/diagnosis , Mycoses/drug therapy , Mycoses/microbiology , Antifungal Agents/therapeutic use , Fatal Outcome , Dermatomycoses/diagnosis , Dermatomycoses/microbiology , Dermatomycoses/drug therapy , Amphotericin B/therapeutic use , Drug Combinations
3.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736386

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Amphotericin B , Drug Contamination , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Amphotericin B/analysis , Amphotericin B/chemistry , Mass Spectrometry/methods
4.
Parasite Immunol ; 46(5): e13037, 2024 May.
Article En | MEDLINE | ID: mdl-38720446

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Amphotericin B , Antibodies, Protozoan , Immunotherapy , Leishmania infantum , Leishmaniasis, Visceral , Mice, Inbred BALB C , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Animals , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Leishmania infantum/drug effects , Mice , Immunotherapy/methods , Female , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Immunoglobulin G/blood , Parasite Load , Disease Models, Animal , Cell Surface Display Techniques , Cytokines/metabolism , Th1 Cells/immunology
5.
Mycoses ; 67(5): e13728, 2024 May.
Article En | MEDLINE | ID: mdl-38695201

BACKGROUND: Fungal keratitis is a severe eye infection that can result in blindness and visual impairment, particularly in developing countries. Fusarium spp. are the primary causative agents of this condition. Diagnosis of Fusarium keratitis (FK) is challenging, and delayed treatment can lead to serious complications. However, there is limited epidemiological data on FK, especially in tropical areas. OBJECTIVES: This study aimed to describe the clinical, laboratorial and epidemiological characteristics of FK in a tropical semi-arid region of Brazil. PATIENTS/METHODS: Adult patients with laboratory-confirmed FK diagnosed between October 2019 and March 2022 were evaluated. Fusarium isolates were characterized at molecular level and evaluated regarding antifungal susceptibility. RESULTS: A total of 226 clinical samples from patients suspected of keratitis were evaluated; fungal growth was detected in 50 samples (22.12%); out of which 42 were suggestive of Fusarium spp. (84%). Molecular analysis of a randomly selected set of 27 isolates identified F. solani species complex (n = 14); F. fujikuroi sensu lato (n = 6) and F. dimerum sensu lato (n = 7); a total of 10 haplotypes were identified among the strains. All but one Fusarium strains were inhibited by amphotericin B, natamycin and fluconazole. Most patients were male (71.42%; 30 out of 42), aged from 27 to 73 years old. Trauma was the most important risk factor for FK (40.47%; 17 out of 42). Patients were treated with antifungals, corticoids and antibiotics; keratoplasty and eye enucleation were also performed. CONCLUSIONS: The study provided insights into the characteristics of FK in tropical regions and emphasized the importance of enhanced surveillance and management strategies.


Antifungal Agents , Eye Infections, Fungal , Fusariosis , Fusarium , Keratitis , Microbial Sensitivity Tests , Humans , Brazil/epidemiology , Fusarium/genetics , Fusarium/drug effects , Fusarium/isolation & purification , Fusarium/classification , Male , Female , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Adult , Keratitis/microbiology , Keratitis/epidemiology , Keratitis/drug therapy , Middle Aged , Fusariosis/microbiology , Fusariosis/epidemiology , Fusariosis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/drug therapy , Aged , Young Adult , Adolescent , Tropical Climate , Aged, 80 and over , Amphotericin B/pharmacology , Amphotericin B/therapeutic use
6.
Exp Clin Transplant ; 22(4): 314-317, 2024 Apr.
Article En | MEDLINE | ID: mdl-38742324

Mucormycosis, a group of opportunistic mycoses caused by Mucorales, present a significant threat to immunocompromised patients. In this report, we present the case of a 57-year-old male patient who underwent liver transplant for secondary biliary cirrhosis following inadvertent bile duct injury. Despite initial satisfactory postoperative evolution, the patient developed fever, and imaging revealed a suspicious lesion. Preliminary culture growth suggested a filamentous fungus, leading to initiation of liposomal amphotericin B. However, the lesion progressed, and a surgical debridement was necessary. During surgery, involvement of the liver dome and diaphragm was observed, and a nonanatomical hepatectomy was performed. Despite efforts, the patient's condition deteriorated, ultimately resulting in multiple organ failure and mortality. This case emphasizes the challenging nature of mucormycosis in livertransplant recipients.


Antifungal Agents , Immunocompromised Host , Liver Cirrhosis, Biliary , Liver Transplantation , Mucormycosis , Humans , Male , Mucormycosis/diagnosis , Mucormycosis/microbiology , Mucormycosis/immunology , Mucormycosis/drug therapy , Mucormycosis/etiology , Middle Aged , Liver Transplantation/adverse effects , Antifungal Agents/therapeutic use , Fatal Outcome , Liver Cirrhosis, Biliary/surgery , Liver Cirrhosis, Biliary/microbiology , Liver Cirrhosis, Biliary/diagnosis , Treatment Outcome , Opportunistic Infections/microbiology , Opportunistic Infections/immunology , Opportunistic Infections/diagnosis , Opportunistic Infections/drug therapy , Debridement , Allografts , Hepatectomy , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Multiple Organ Failure/etiology , Multiple Organ Failure/microbiology
7.
J Phys Chem Lett ; 15(18): 4823-4827, 2024 May 09.
Article En | MEDLINE | ID: mdl-38668706

Amphotericin B is a popular antifungal antibiotic, but the exact way it works is still a matter of debate. Here, we used monolayers composed of phosphatidylcholine with ergosterol as a model of fungal lipid membranes to study drug incorporation from the aqueous phase and analyze the molecular reorganization of membranes underlying the biological activity of the antibiotic. The results show that the internalization of antibiotic molecules into membranes occurs only in the presence of ergosterol in the lipid phase. Comparison of images of solid-supported monolayers obtained by atomic force microscopy and lifetime imaging fluorescence microscopy shows the formation of intramembrane clusters of various sizes in the lipid phase, consisting mainly of antibiotic dimers and relatively large membrane pores (∼15 nm in diameter). The results reveal multiple modes of action of amphotericin B, acting simultaneously, each of which adversely affects the structural properties of the lipid membranes and their physiological functionality.


Amphotericin B , Phosphatidylcholines , Amphotericin B/chemistry , Phosphatidylcholines/chemistry , Ergosterol/chemistry , Antifungal Agents/chemistry , Microscopy, Atomic Force , Anti-Bacterial Agents/chemistry , Cell Membrane/chemistry , Microscopy, Fluorescence
8.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38612381

Candida albicans is a prevalent fungal pathogen that displays antibiotic resistance. The polyene antifungal amphotericin B (AmB) has been the gold standard because of its broad antifungal spectra, and its liposomal formulation, AmBisome, has been used widely and clinically in treating fungal infections. Herein, we explored enhancing the antifungal activity of AmBisome by integrating a small chitin-binding domain (LysM) of chitinase A derived from Pteris ryukyuensis. LysM conjugated with a lipid (LysM-lipid) was initially prepared through microbial transglutaminase (MTG)-mediated peptide tag-specific conjugation of LysM with a lipid-peptide substrate. The AmBisome formulation modified with LysM-lipid conjugates had a size distribution that was comparable to the native liposomes but an increased zeta potential, indicating that LysM-lipid conjugates were anchored to AmBisome. LysM-lipid-modified AmBisome exhibited long-term stability at 4 °C while retaining the capacity to bind chitin. Nevertheless, the antifungal efficacy of LysM-lipid-modified AmBisome against C. albicans was modest. We then redesigned a new LysM-lipid conjugate by introducing a peptide linker containing a thrombin digestion (TD) site at the C-terminus of LysM (LysM-TD linker-lipid), thereby facilitating the liberation of the LysM domain from AmBisome upon the addition of thrombin. This new AmBisome formulation anchored with LysM-TD linker-lipid exhibited superior performance in suppressing C. albicans growth in the presence of thrombin compared with the LysM-lipid formulation. These results provide a platform to design stimuli-responsive AmBisome formulations that respond to external environments and thus advance the treatment of pathogenic fungi infections.


Amphotericin B , Antifungal Agents , Peptide Hydrolases , Antifungal Agents/pharmacology , Liposomes , Thrombin , Candida albicans , Chitin , Peptides/pharmacology , Lipids
9.
Curr Oncol ; 31(4): 2274-2277, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38668071

Maintenance chemotherapy is a standard treatment in patients with non-progressive advance staged IV non-squamous non-small cell lung cancer after induction therapy. Here, we report the case of a 53-year-old man undergoing a maintenance monotherapy with pemetrexed who presented prolonged pancytopenia despite filgrastim injections. A bone marrow aspiration revealed a macrophage activation syndrome with Leishmania amastigotes. A Polymerase Chest Reaction testing confirmed the diagnosis of visceral leishmaniasis. Treatment with liposomal amphotericin B was started. Oncologists should bear in mind that visceral leishmaniasis in endemic areas can potentially induce severe and prolonged pancytopenia in immunosuppressed patients, during chemotherapy in particular.


Leishmaniasis, Visceral , Lung Neoplasms , Pancytopenia , Humans , Pancytopenia/chemically induced , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/complications , Male , Middle Aged , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Diagnosis, Differential , Pemetrexed/therapeutic use , Pemetrexed/adverse effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antiprotozoal Agents/therapeutic use , Amphotericin B/therapeutic use
10.
Mycopathologia ; 189(3): 35, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637433

Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.


Antifungal Agents , Candidiasis , Humans , Antifungal Agents/pharmacology , Candidiasis/microbiology , Candida auris , Candida , Amphotericin B/pharmacology , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests
11.
Biosci Rep ; 44(4)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38563086

The objective of this work was to evaluate the combination of synthetic peptides based on the γ-core motif of defensin PvD1 with amphotericin B (AmB) at different concentrations against Candida albicans. We applied the checkerboard assay using different concentrations of the commercial drug AmB and the synthetic peptides γ31-45PvD1++ and γ33-41PvD1++ against C. albicans, aiming to find combinations with synergistic interactions. Between these two interactions involving γ31-45PvD1++ and AmB, an additive effect was observed. One such interaction occurred at concentrations of 0.009 µM of peptide γ31-45PvD1++ and 13.23 µM of AmB and another condition of 0.019 µM of peptide γ31-45PvD1++ and 6.61 µM of AmB. The other two concentrations of the interaction showed a synergistic effect in the combination of synthetic peptide γ31-45PvD1++ and AmB, where the concentrations were 1.40 µM peptide γ31-45PvD1++ and 0.004 µM AmB and 0.70 µM γ31-45PvD1++ peptide and 0.002 µM AmB. We proceeded with analysis of the mechanism of action involving synergistic effects. This examination unveiled a range of impactful outcomes, including the impairment of mitochondrial functionality, compromise of cell wall integrity, DNA degradation, and a consequential decline in cell viability. We also observed that both synergistic combinations were capable of causing damage to the plasma membrane and cell wall, causing leakage of intracellular components. This discovery demonstrates for the first time that the synergistic combinations found between the synthetic peptide γ31-45PvD1++ and AmB have an antifungal effect against C. albicans, acting on the integrity of the plasma membrane and cell wall.


Amphotericin B , Candida albicans , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Peptides/pharmacology , Cell Membrane , Cell Wall , Microbial Sensitivity Tests
12.
J Agric Food Chem ; 72(15): 8521-8535, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38565849

Thirty-five norsesquiterpenoids were isolated from the fermentation broth of Streptomyces microflavus from the forest soil of Ailaoshan in China. The structures of new compounds (1-5, 10-26) were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra, as well as Mosher's reagent derivatives method. Norsesquiterpenoids showed different levels of antifungal activity with MIC80 values ranging from 25 to 200 µg/mL against Candida albicans, Candida parapsilosis, and Cryptococcus neoformans. The combining isolated norsesquiterpenoids with amphotericin B resulted in a synergistic interaction against test yeast-like fungi with a fractional inhibitory concentration index < 0.5. Compound 33 significantly inhibited biofilm formation and destroyed the preformed biofilm of fungi. Moreover, 33 downregulated the expression of adhesion-related genes HWP1, ALS1, ALS3, ECE1, EAP1, and BCR1 to inhibit the adhesion of C. albicans. Findings from the current study highlight the potential usage of norsesquiterpenoids from soil-derived Streptomyces for antifungal leads discovery.


Antifungal Agents , Streptomyces , Antifungal Agents/pharmacology , Amphotericin B/pharmacology , Candida albicans , Streptomyces/genetics , Biofilms , Microbial Sensitivity Tests
13.
Pediatr Transplant ; 28(3): e14740, 2024 May.
Article En | MEDLINE | ID: mdl-38616325

BACKGROUND: Pediatric lung transplant patients are at risk for developing invasive fungal infections post-transplant. No consensus exists on optimal antifungal regimens and voriconazole, a common first-line agent, has been shown to cause hepatotoxicity. We describe a single-center experience utilizing a novel antifungal regimen of intravenous micafungin and nebulized amphotericin B immediately post-transplant with conversion to an azole at the time of hospital discharge and compare it to a historical cohort of patients who received voriconazole monotherapy throughout their immediate post-operative course. METHODS: This is a retrospective review of patients in the age 0-18 who received a lung transplant from June 2016-May 2021. Data points collected included: demographic data, transplant date and discharge date, Aspergillus colonization, type of lung transplant, hospitalization and level of care information, induction and antifungal medication regimen; AST, ALT, GGT, bilirubin, and direct bilirubin at various timepoints; and respiratory and blood culture results. The two patient groups were compared by assessment of changes in LFTs and culture results. RESULTS: Forty-two patients were included in the analysis, with 24 patients receiving micafungin and nebulized amphotericin and 18 patients receiving voriconazole. All patients in both groups experienced a post-operative elevation in at least one transaminase or bilirubin. More patients in the micafungin/amphotericin group had resolution of all abnormal LFTs by 1 month post-transplant (p = .036). Additionally, patients in the micafungin/amphotericin group experienced faster normalization of their LFTs compared with the voriconazole group (p < .001). Ten patients in the micafungin/amphotericin group and five patients in the voriconazole group were found to have fungal growth on culture post-transplant, but this difference was not found to be statistically significant (p = .507). CONCLUSIONS: An antifungal regimen of micafungin and nebulized amphotericin B liposomal may be useful at decreasing the duration of elevated liver enzymes in pediatric patients in the immediate post-lung transplant period when compared with voriconazole monotherapy. Larger prospective studies looking at antifungal regimens in pediatric patients post-lung transplant are warranted.


Antifungal Agents , Chemical and Drug Induced Liver Injury , Humans , Child , Infant, Newborn , Infant , Child, Preschool , Adolescent , Antifungal Agents/therapeutic use , Amphotericin B/therapeutic use , Voriconazole/therapeutic use , Micafungin/therapeutic use , Transplant Recipients , Prospective Studies , Bilirubin , Lung
14.
BMC Infect Dis ; 24(1): 439, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658844

BACKGROUND: In recent years, the prevalence of respiratory fungal diseases has increased. Polyene antifungal drugs play a pivotal role in the treatment of these conditions, with amphotericin B (AmB) being the most representative drug. This study aimed to evaluate the efficacy and safety of topical administration of AmB in the treatment of respiratory fungal infections. METHODS: We conducted a retrospective study on hospitalized patients treated with topical administered AmB for respiratory fungal infections from January 2014 to June 2023. RESULTS: Data from 36 patients with invasive pulmonary fungal infections treated with topical administration of AmB were collected and analyzed. Nebulization was administered to 27 patients. After the treatment, 17 patients evidenced improved conditions, whereas 10 patients did not respond and died in the hospital. One patient experienced an irritating cough as an adverse reaction. Seven patients underwent tracheoscopic instillation, and two received intrapleural irrigation; they achieved good clinical therapeutic efficacy without adverse effects. CONCLUSION: The combined application of systemic antifungal treatment and topical administration of AmB yielded good therapeutic efficacy and was well-tolerated by the patients. Close monitoring of routine blood tests, liver and kidney function, and levels of electrolytes, troponin, and B-type natriuretic peptide supported this conclusion.


Administration, Topical , Amphotericin B , Antifungal Agents , Humans , Amphotericin B/administration & dosage , Amphotericin B/therapeutic use , Amphotericin B/adverse effects , Male , Female , Retrospective Studies , Middle Aged , Antifungal Agents/administration & dosage , Antifungal Agents/therapeutic use , Antifungal Agents/adverse effects , Aged , Adult , Treatment Outcome , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Aged, 80 and over , Lung Diseases, Fungal/drug therapy , Young Adult
15.
Mycoses ; 67(4): e13724, 2024 Apr.
Article En | MEDLINE | ID: mdl-38584320

OBJECTIVE: This study aims to assess the clinical characteristics of sporotrichosis in low-endemic areas of China, including the prevalence geography, genotypic traits of patients, clinical manifestations, and strain virulence and drug sensitivities. The objective is to improve the currently used clinical management strategies for sporotrichosis. METHODS: Retrospective data were collected from patients diagnosed with sporotrichosis through fungal culture identification. The isolates from purified cultures underwent identification using CAL (Calmodulin) gene sequencing. Virulence of each strain was assessed using a Galleria mellonella (G. mellonella) larvae infection model. In vitro susceptibility testing against commonly used clinical antifungal agents for sporotrichosis was conducted following CLSI criteria. RESULTS: In our low-endemic region for sporotrichosis, the majority of cases (23) were observed in middle-aged and elderly women with a history of trauma, with a higher incidence during winter and spring. All clinical isolates were identified as Sporothrix globosa (S. globosa). The G. mellonella larvae infection model indicated independent and dose-dependent virulence among strains, with varying toxicity levels demonstrated by the degree of melanization of the G. mellonella. Surprisingly, lymphocutaneous types caused by S. globosa exhibited lower in vitro virulence but were more common in affected skin. In addition, all S.globosa strains displayed high resistances to fluconazole, while remaining highly susceptible to terbinafine, itraconazole and amphotericin B. CONCLUSION: Given the predominance of elderly women engaged in agricultural labour in our region, which is a low-epidemic areas, they should be considered as crucial targets for sporotrichosis monitoring. S. globosa appears to be the sole causative agent locally. However, varying degrees of melanization in larvae were observed among these isolates, indicating a divergence in their virulence. Itraconazole, terbinafine and amphotericin B remain viable first-line antifungal options for treating S.globosa infection.


Sporothrix , Sporotrichosis , Aged , Middle Aged , Humans , Female , Itraconazole/pharmacology , Itraconazole/therapeutic use , Sporotrichosis/microbiology , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Terbinafine/therapeutic use , Retrospective Studies , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Sporothrix/genetics , China/epidemiology
16.
Colloids Surf B Biointerfaces ; 238: 113918, 2024 Jun.
Article En | MEDLINE | ID: mdl-38669750

The supramolecular-based macrocyclic amphiphiles have fascinating attention and find extensive utilization in the pharmaceutical industry for efficient drug delivery. In this study, we designed and synthesized a new supramolecular amphiphilic macrocycle to serve as an efficient nanocarrier, achieved by treating 4-hydroxybenzaldehyde with 1-bromotetradecane. The derivatized product was subsequently treated with resorcinol to cyclize, resulting in the formation of a calix(4)-resorcinarene-based supramolecular amphiphilic macrocycle. The synthesized macrocycle and intermediate products were characterized using mass spectrometry, IR, and 1H NMR spectroscopic techniques. The amphotericin-B (Amph-B)-loaded and unloaded amphiphiles were screened for biocompatibility studies, vesicle formation, particle shape, size, surface charge, drug entrapment, in-vitro release profile, and stability through atomic force microscopy (AFM), Zetasizer, HPLC, and FT-IR. Amph-B -loaded macrocycle-based niosomal vesicles were investigated for in-vivo bioavailability in rabbits. The synthesized macrocycle exhibited no cytotoxicity against normal mouse fibroblast cells and was found to be hemocompatible and safe in mice following an acute toxicity study. The drug-loaded macrocycle-based vesicles appeared spherical, nano-sized, and homogeneous in size, with a notable negative surface charge. The vesicles remained stable after 30 days of storage. The results of Amph-B oral bioavailability and pharmacokinetics revealed that the newly tailored niosomal formulation enhanced drug solubility, protected drug degradation at gastric pH, facilitated sustained drug release at the specific target site, and delayed plasma drug clearance. Incorporating such advanced niosomal formulations in the field of drug delivery systems has the potential to revolutionize therapeutic outcomes and improve the quality of patient well-being.


Amphotericin B , Biological Availability , Calixarenes , Drug Carriers , Calixarenes/chemistry , Animals , Mice , Drug Carriers/chemistry , Drug Carriers/chemical synthesis , Rabbits , Amphotericin B/pharmacokinetics , Amphotericin B/chemistry , Amphotericin B/pharmacology , Amphotericin B/administration & dosage , Administration, Oral , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Particle Size , Drug Liberation , Nanoparticles/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Male
18.
PLoS Negl Trop Dis ; 18(4): e0012134, 2024 Apr.
Article En | MEDLINE | ID: mdl-38669211

BACKGROUND: Currently available treatment options are mostly effective in achieving long-term cure in visceral leishmaniasis (VL) patients. However, there have been reports of recurrence of this illness in both immunosuppressed and immunocompetent patients. CASE PRESENTATION: We report the first case of recurrent VL relapse in a 19-year-old immunocompetent female with functional hypopituitarism (hypogonadotropic hypogonadism with central hypothyroidism) from Bangladesh, who has been treated three times previously with optimal dosage and duration- liposomal amphotericin B (LAmB) alone and in combination with miltefosine. We treated the patient successfully with a modified treatment regimen of 10 mg/kg body weight LAmB for two consecutive days along with oral miltefosine for seven days as loading dose. For secondary prophylaxis, the patient received 3 mg/kg body weight LAmB along with oral miltefosine for seven days monthly for five doses followed by hormonal replacement. The patient remained relapse free after 12 months of her treatment completion. CONCLUSION: In the absence of protective vaccines against Leishmania species and standard treatment regimen, this modified treatment regimen could help the management of recurrent relapse cases.


Amphotericin B , Antiprotozoal Agents , Hypopituitarism , Leishmaniasis, Visceral , Phosphorylcholine , Recurrence , Female , Humans , Young Adult , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Bangladesh , Hypopituitarism/drug therapy , Leishmaniasis, Visceral/drug therapy , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/therapeutic use , Phosphorylcholine/administration & dosage , Treatment Outcome , Adult
19.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Article En | MEDLINE | ID: mdl-38557112

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Amphotericin B , Antifungal Agents , Glycosides , Mucormycosis , Neutropenia , Triterpenes , Animals , Amphotericin B/therapeutic use , Amphotericin B/pharmacology , Mucormycosis/drug therapy , Mice , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neutropenia/drug therapy , Neutropenia/complications , Disease Models, Animal , Drug Therapy, Combination , Female , Rhizopus/drug effects , Lung Diseases, Fungal/drug therapy , Lung Diseases, Fungal/microbiology , Mucor/drug effects , Triazoles/therapeutic use , Triazoles/pharmacology
20.
Sci Rep ; 14(1): 9870, 2024 04 30.
Article En | MEDLINE | ID: mdl-38684845

Visceral leishmaniasis (VL) is an infectious disease caused by Leishmania infantum. Clinically, VL evolves with systemic impairment, immunosuppression and hyperactivation with hypergammaglobulinemia. Although renal involvement has been recognized, a dearth of understanding about the underlying mechanisms driving acute kidney injury (AKI) in VL remains. We aimed to evaluate the involvement of immunoglobulins (Igs) and immune complexes (CIC) in the occurrence of AKI in VL patients. Fourteen VL patients were evaluated between early treatment and 12 months post-treatment (mpt). Anti-Leishmania Igs, CIC, cystatin C, C3a and C5a were assessed and correlated with AKI markers. Interestingly, high levels of CIC were observed in VL patients up to 6 mpt. Concomitantly, twelve patients met the criteria for AKI, while high levels of cystatin C were observed up to 6 mpt. Plasmatic cystatin C was positively correlated with CIC and Igs. Moreover, C5a was correlated with cystatin C, CIC and Igs. We did not identify any correlation between amphotericin B use and kidney function markers in VL patients, although this association needs to be further explored in subsequent studies. Our data reinforce the presence of an important renal function impairment during VL, suggesting the involvement of Igs, CIC, and C5a in this clinical condition.


Acute Kidney Injury , Antigen-Antibody Complex , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/blood , Acute Kidney Injury/blood , Acute Kidney Injury/immunology , Acute Kidney Injury/parasitology , Male , Female , Antigen-Antibody Complex/blood , Adult , Biomarkers/blood , Middle Aged , Cystatin C/blood , Adolescent , Young Adult , Amphotericin B/therapeutic use , Leishmania infantum/immunology
...